Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics.
نویسندگان
چکیده
Transient elevations of intracellular Ca2+ play an important role in regulating the sensitivity of olfactory transduction, but such elevations have not been demonstrated in the olfactory cilia, which are the site of primary odor transduction. To begin to understand Ca2+ signaling in olfactory cilia, we used high-resolution imaging techniques to study the Ca2+ transients that occur in salamander olfactory receptor neurons (ORNs) as a result of cyclic nucleotide-gated (CNG) channel activation. To visualize ciliary Ca2+ signals, we loaded ORNs with the Ca2+ indicator dye Fluo-3 AM and measured fluorescence with a laser scanning confocal microscope. Application of the phosphodiesterase inhibitor IBMX increased fluorescence in the cilia and other neuronal compartments; the ciliary signal occurred first and was more transient. This signal could be abolished by lowering external Ca2+ or by applying LY83583, a potent blocker of CNG channels, indicating that Ca2+ entry through CNG channels was the primary source of fluorescence increases. Direct activation of CNG channels with low levels of 8-Br-cGMP (1 microM) led to tonic Ca2+ signals that were restricted locally to the cilia and the dendritic knob. Elevated external K+, which depolarizes cell membranes, increased fluorescence signals in the cell body and dendrite but failed to increase ciliary Ca2+ fluorescence. The results demonstrate the existence and spatiotemporal properties of Ca2+ transients in individual olfactory cilia and implicate CNG channels as a major pathway for Ca2+ entry into ORN cilia during odor transduction.
منابع مشابه
Spatial Distribution of Calcium-Gated Chloride Channels in Olfactory Cilia
BACKGROUND In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the...
متن کاملImaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction.
The possibility that odor stimuli trigger distinct Ca2+ elevations within the cilia of vertebrate olfactory receptor neurons (ORNs) is a widely proposed concept. However, because of the small size of the olfactory cilia, the existence and properties of such Ca2+ elevations and their role in odor transduction are still unknown. We investigate odor-induced Ca2+ changes in individual olfactory cil...
متن کاملFlash photolysis of caged compounds in the cilia of olfactory sensory neurons.
Photolysis of caged compounds allows the production of rapid and localized increases in the concentration of various physiologically active compounds. Caged compounds are molecules made physiologically inactive by a chemical cage that can be broken by a flash of ultraviolet light. Here, we show how to obtain patch-clamp recordings combined with photolysis of caged compounds for the study of olf...
متن کاملModel of Ca oscillations due to negative feedback in olfactory cilia
We present a mathematical model for Ca oscillations in the cilia of olfactory sensory neurons. The underlying mechanism is based on direct negative regulation of cyclic nucleotide-gated channels by calcium/calmodulin and does not require any autocatalysis such as calcium-induced calcium release. The model is in quantitative agreement with available experimental data, both with respect to oscill...
متن کاملSingle odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides.
Olfactory transduction is thought to occur by processes that are mainly restricted to the specialized cilia emanating from the distal end of the receptor neuron's single dendrite. The involvement of a cAMP-based second messenger system seems likely, and a cyclic nucleotide-sensitive current has been recorded in patches of membrane from the cilia. However, the small diameter of the cilia and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 11 شماره
صفحات -
تاریخ انتشار 1997